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Abstract. The path of a transformation is defined and discussed in the framework of classical thermody-
namics. The Ehrenfest’s approach to the theory of higher order transition is generalized to heterogeneous
systems of r components in the presence and in the absence of electromagnetic fields. By introducing a
state label the phase transitions, in proximity of singular points, are analysed in terms of the stability
theory. Systems, in the presence and in the absence of a magnetic field are discussed in some detail. It is
shown that the Ehrenfest approximation about the transition of 2nd order is physically unstable.

PACS. 05.70.-a Thermodynamics – 05.70.Fh Phase transitions: general studies – 05.70.Jk Critical point
phenomena

1 Introduction

Generally, macroscopic processes are studied in a single
phase system which is assumed to be so large that the
boundaries do not affect the physical phenomenon of in-
terest. Obviously, this is an idealization of the reality even
though reasonable for several situations. Notwithstanding
natural phenomena involve always a number of phases (or
subsystems) and hence the global system is heterogeneous.

It is not surprising, therefore, that phase equilibrium
thermodynamics is of paramount importance for processes
development in the chemical industry and play an impor-
tant role in the phase equilibria thermodynamics of con-
densed matter [1].

It is common knowledge that the postulates of ther-
modynamics give us the possibility to describe the macro-
scopic state of a system independently of molecular
considerations: classical thermodynamics is restricted to
equilibrium situations [2–4]. It deals with reversible pro-
cesses, i.e. transitions between equilibrium states. This
is a crucial point and can be synthesized with the fol-
lowing question: “if thermodynamics studies isolated sys-
tems, how is it possible to determine the equilibrium condi-
tions?” The question can be overcome in two ways which
correspond to two different formulations of thermodynam-
ics. The first, due to Gibbs, is phenomenological and uses
the concept of “virtual displacement” [5–7]. The second
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one, due to Charatheodory, is axiomatic and exploits the
idea of “partition” [8–10].

In Gibbs approach a thermodynamic transformation
is studied by discriminating among extensive and inten-
sive variables. Extensive variables characterize the system
while the intensive variables indicate the interactions of
the system with its surroundings. A full knowledge of a
system is obtained by the fundamental equation and, as
Gibbs himself realized [5], it can be generalized to include
any extensive variable associated with the work done by
the system. Thus, one assumes that all thermodynamic
characteristics of a system are contained in the fundamen-
tal equation, which is a surface in the Gibbs space, termed
primitive surface [6].

It is the aim of this paper to formulate, for hetero-
geneous systems, a concept of thermodynamic path un-
ambiguously beginning from topological properties of the
primitive surface and to study some its general conse-
quences. We take an approach in which the global evo-
lution, in the Gibbs space, is derived from a state label
which is strictly connected to the homogeneity of the fun-
damental equation. Such a parameter could be a help-
ful tool to select one among the possible paths that the
system can cover. It enables one to investigate the ana-
lytical properties of Gibbs space also in proximity of a
phase transition. It is well known that the first attempt
at classifying phase transitions was Ehrenfest classifica-
tion scheme [11,12]. According to this scheme phase tran-
sitions were labeled by the lowest derivative of the free
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energy that is discontinuous at the transition. The Ehren-
fest scheme is inaccurate in the neighborhood of phase
transitions, as it neglects the role of thermodynamic fluc-
tuations [13]. An interesting aspect of our approach con-
sists in the possibility to study the analytical properties
of critical points that, in this context, are the singular
points of the transformation. The equations derived also
provide a mathematical means to investigate the stability
of a transformation in the neighborhood of singular points
(continuous transitions). Among the phase transitions,
the onset of the superconductivity in a zero magnetic field
is, without doubt, the most known [14,15], therefore we
focus on thermodynamics in the presence of a magnetic
field. In any case, the treatment can be extended to more
complex physical situations where magnetic and electric
fields are simultaneously present and several chemical re-
actions can occur. Some systems, particularly soft matter
systems, exhibit phenomena that can be regarded as phase
transitions, but are quite different from the ordinary ones
[1]. Theoretical analyses of such transitions have been pre-
sented in the literature. Such theories are essentially the-
ories where the two “phases” are not regarded as truly
different phases, but simply as conditions on the two side
of a region where physical properties change very rapidly
with slight changes of the state variables. Then such theo-
ries are not truly phase-transitions since the abruptness of
the transition is not retained [4]. The present formulation
can be seen also as a preliminary attempt to describe these
phenomena in terms of equilibrium thermodynamics. Fi-
nally, in order to illustrate the method, one-component
two-phase systems have been investigated both in the ab-
sence and in the presence of magnetic field.

2 Thermodynamics in the presence
of electromagnetic fields

When a material is embedded in a field, its thermody-
namic properties are affected. The sources of the field may
be in the surroundings or included in the system. In either
case, the properties of material affect the value of effective
field in any point in the material.

It is customary in the treatment of these systems to
make a nonoperational decomposition of internal energy
into two parts [18,19]:

dŨ = dU + dUfield (1)

where dŨ is the differential change in the internal energy
of the system, dU is the differential change of internal
energy in absence of field and dUfield is associated with the
differential change in the field energy. This term, according
to the classic electrodynamics, is given by [15]

dUfield = H · d(BV ) (2)

where
B = η ·H (3)

is the magnetic induction, H is the magnetizing field and η
is the permeability of the contents in the volume V . The

induction field depends on the magnetization M of the
matter in V according to the relationship

B = η0 (H + M) (4)

being the permeability of free space. The decomposition
in equation (1) does not imply that dU is independent
of the magnetostatic potential, we shall, however, make
the additional assumption that dU depends only on the
temperature, pressure and composition.

By employing equations (2) and (4), we can put equa-
tion (1) into the form

dU∗ = TdS − P ∗dV +
r∑

i=1

µidni + η0Hd(M) (5)

where U∗ is the excess of internal energy over the back-
ground field energy associated with the volume V of space

U∗ = Ũ − η0
2

H2V (6)

P ∗ is a pressure-like variable

P ∗ = P − η0
2

H2 (7)

M = MV is the total magnetic moment, S is the entropy
and µj , nj are the chemical potential and mole number of
the component j.

We consider a linearly isotropic and uniform contin-
uum uniformly magnetized so that η in equation (3) is
independent of H. Thus we may write

M = MV =
η − η0
η0

VH = χH (8)

where χ is the volumetric magnetic susceptibility.
Equation (5) can be considered an operational defini-

tion of the internal energy function for the system of inter-
est. Such a function (fundamental equation) contains all
needed information about the system in thermodynamic
equilibrium and is a first order homogeneous function of
its variables so that the Euler theorem yields

SdT − V dP ∗ +
r∑

i=1

nidµi + η0MdH = 0 (9)

or, equivalently,

sdT − vdP ∗ +
r∑

i=1

xidµi + η0mdH = 0 (10)

where

s = S/n; v = V/n; xi = ni/n; m = M/n (11)

are average molar quantities and n =
∑r

k=1 n is the total
number of moles.

To extend these results over heterogeneous systems, we
consider a multicomponent, heterogeneous system made
up of number ν of homogeneous and magnetizable phases
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and in which no chemical reaction occurs. Originally each
phase, in internal equilibrium, is separated from each other
by boundaries that are permeable to the magnetic field but
impermeable to the flow of heat or diffusing species. When
the separation surfaces are removed, transfer of heat and
mass, displacements of phase boundaries and redistribu-
tions of magnetic or electric field energy may take place.
Since U∗, S, V and nk are extensive properties, their to-
tal value is approximately the sum of internal energy, en-
tropy, volume and mole number, of the different phases,
that is they are additive invariants. In reality one should
also include the surface effects and interfacial boundaries
tensions. However, we assume that the phases are so large
and of such a shape that the surface contribution can be
neglected as compared with the bulk-volume effects.

Under this approximation, the criterion for equilibrium
takes the form

(δU∗)S,V,n1,...nrM
≥ 0 (12)

where δ is a virtual variation [7]. The equilibrium condi-
tions, for the whole system, can be obtained by considering
the phases pairwise [21] to reach the conclusion that

T (α) = T for α = 1, ..., ν
P ∗(α) = P ∗ for α = 1, ..., ν
µ

(α)
i = µ for α = 1, ..., ν and i = 1, ..., r

H(α) = H for α = 1, ..., ν.

(13)

These conditions represent the necessary and sufficient
conditions for equilibrium when all interphase surfaces
are deformable, permeable to all components, heat-
conducting and permeable to magnetic flux.

3 Phase-diagram space

Equilibrium conditions (13) allow us to write the Gibbs-
Duhem equation, relatively to an arbitrary phase α, as

s(α)dT − v(α)dP ∗ +
r∑

i=1

x
(α)
i dµi + η0m(α)dH = 0

α = 1, 2, ..., ν. (14)

This equation is generally studied to derive a relationship
between the variables in the phase-diagram of the sys-
tem and describe the states of coexistence of any pairs of
phases. Indeed, many authors have discussed the existence
and characteristics of the solutions of this equation, par-
ticularly illuminating is the treatment of Mistura [17], who
studied the solution of the Gibbs-Duhem equation in the
contact space where all densities and fields are regarded
as independent variables. Throughout this paper, we use a
different approach in order to emphasize some properties
inherent in the phase transitions near the singular points.

In order to obtain information about the thermody-
namic state of the system it is convenient to exploit the
mass balance in each phase

r∑

i=1

x
(α)
i = 1 (15)

and to rewrite equation (14) as

s(α)dT−ν(α)dP ∗+
r−1∑

i=1

x
(α)
i d(µi − µr)+dµr+η0m(α)dH=0

(16)
where equation (15) has been used.

Now, we take an arbitrary phase β of the system as
reference phase so that equation (16) becomes

r−1∑

i=1

β [xi]
αdYi + β [s]α dT − β [v]α dP ∗ + η0β [m]α dH = 0

with α, β = 1, 2, ..., ν and α �= β (17)

where Yi = µi − µr is the chemical potential relative to
the component r and

β [s]α = s(β) − s(α), β [v]α = v(β) − v(α),

β [m]α = m(β) − m(α), β [xi]
α = x

(β)
i − x

(α)
i (18)

are, respectively, the jumps of entropy, volume, magneti-
zation and mole fraction of component i across the surface
separating the phases α and β.

Sets of observed phase behaviors are often presented as
phase diagrams where some thermodynamic parameters
are varied while others are fixed [3]. It is found experimen-
tally [4] that the properties of systems in heterogeneous
equilibrium are modified in the presence of a magnetic
field. Equilibrium compositions, then, are expected to vary
with the strength of magnetic field. However, the effect is
so slight that extremely high field are necessary for any
appreciable change of the system. On the other hand, for
linear materials the magnetic susceptivity is independent
of the field strength, therefore we assume that H is a func-
tion of temperature and pressure only. As a consequence
the method could be helpful to study the phase behaviors
exhibited by hydrocarbon mixtures, the phase diagram of
oxides at high temperatures, the phase transitions in semi-
conductors induced by external fields as well as the shape
transition in magnetic field of sensitive polymer gels.

Thus, by substituting for pressure P* the expres-
sion (7), and assuming for simplicity, that H is dependent
on T and P equation (21) can be put in the form

r−1∑

i=1

β [xi]
αdYi + β [s∗]α dT − β [v∗]α dP = 0

with α, β = 1, 2, ..., ν and α �= β (19)

with

β [s∗]α = β [s]α + η0β [m + vH]α
(
∂H
∂T

)

P

(20)

and

β [v∗]α = β [v]α − η0β [m + vH]α
(
∂H
∂P

)

T

. (21)
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Since β �= α there are only ν(ν−1) equations of type (19),
each describing the states of coexistence of a pair of
phases. For each value of β we define a matrix of order
(ν − 1) × (r + 1) by

βLα
i = β [xi]

α for i = 1, 2, ..., r − 1

βLα
r = β [s∗]α ; βLα

r+1 = −β [v∗]α . (22)

By defining
Yr = T ; Yr+1 = P (23)

we cast equation (19) into

r+1∑

j=1

βL(α)
j dYj = 0 α = 1, . . ., ν and α �= β. (24)

Thus, for a fixed value of β, we have a set of ν−1 homoge-
neous linear equations in r + 1 unknowns whose solution
can be determined to within an arbitrary parameter [23].

Indeed, let α
β∆j be the determinant obtained by strik-

ing out the column j from the matrix βLα
j , such solution

can be written as a sequence of proportions

dY1
α
β∆1

=
dY2
α
β∆2

= · · · =
dYr
α
β∆r

=
dYr+1
α
β∆r+1

= dt (25)

dt being a constant of proportionality.
From (25) it follows

dYj

dt
= α

β∆j(Y1, Y2, ..., Yr+1)
j = 1, 2, ..., r + 1
β= 1, 2, ..., ν−1.

(26)
Thus the Gibbs-Duhem equations (14) have been trans-
formed into ν(ν − 1) sets of first-order differential equa-
tions of r+1 variables, each set describing a particular pair
of phases. We note that is β [· · · ]α = −α [· · · ]β so that one
has to resolve only ν(ν− 1)/2 sets of equations. Of course
these sets of equations contain the same physical informa-
tion of the Gibbs-Duhem equations (14), nevertheless in
this form the parameter t makes it possible to rationalize
the concept of thermodynamic path.

4 Thermodynamic paths

Given an heterogeneous system with f degrees of freedom,
described by equation (26), and known the values of Yi for
t = t0

Yi(0) = Y 0
i (27)

it is possible to determine the value of Yi at any other t

Yi = ψi(t, Y 0
1 , ..., Y

0
r+1). (28)

We know that if α
β∆j are continuous and Lipschitzian func-

tions this solution is unique. It may be easily inverted.
Indeed, if we take Yi as a new initial condition and solve
equation (26) for (−t) we come back to Y 0

i

Y 0
i = ψi(−t, Y1, ...Yr+1). (29)

This is a consequence of the reversibility of equilibrium
processes.

We may look at these equations in an alternative way.
We have found r+1 functions, ψi, of the phase-space vari-
ables Yi, which have the property of being constant along
any path of the transformation. If we eliminate the vari-
able t among these r+1 equations, we are then left with a
set of r functions of the phase-space variables alone, which
have the property of being constant along any trajectory.
We may denote them with symbols Φj(Y1, Y2, ..., Yr) j = 1,
2, . . . , r; these functions may be called invariants of the
transformation. Attributing a set of numerical values cj
to these constants

Φj(Y1(t), Y2(t), ..., Yr(t)) = cj j = 1, 2, ..., r (30)

is equivalent to determine the path of the system in phase
space, that is the trajectory of the transformation.

From a geometrical standpoint each of the r equa-
tions (30) for given cj defines an r-dimensional hypersur-
face in the (r + 1)-dimensional phase-space. The path of
the transformation must lie entirely on each of these sur-
faces, and therefore is simply the intersection of r surfaces.
Thus the knowledge of an integral allows us to get rid of
one dimension. Hence, determining more integrals reduces
the problem further until we arrive at a one-dimensional
line that is precisely the path (or trajectory) of the thermo-
dynamic transformation, consisting of equilibrium states.
Although the procedure looks very attractive the situation
is actually much more complex since equations (26) are,
generally, extraordinarily non linear equations. In order
to investigate how the transformation takes place, with-
out knowing the solutions of equation (26), it necessary to
have information about the topology of phase space.

5 Topology of phase-space

Consider a system described by equations (26) whose so-
lutions are given by equation (28). In order to obtain a
geometric picture of the solution, it is useful to consider
the vector

Γ(t) =

⎛

⎜⎝
Y1

...
Yr+1

⎞

⎟⎠ (31)

as a point of an (r + 1)-dimensional space. The value of
Γ(t) represents the state of the system at a given t and
when t increases Γ(t) describes a curve in this (r + 1)-
dimensional space. At each point, the vector

V(t) =

⎛

⎜⎝
dY1/dt

...
dYr+1/dt

⎞

⎟⎠ =

⎛

⎜⎝

α
β∆1

...
α
β∆r+1

⎞

⎟⎠ (32)

is tangent to the curve, and the collection of all such tan-
gent vectors defines the flow field.

Formally the solution of equation (26) can be written
as Γ(t) = U(t, t0)Γ(t0), where U(t, t0) is the propagator
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of the transformation that generates the line defined by
Γ(t), starting from an initial state Γ(t0). The formal ex-
pression of U is obtained by integrating between t0 and t
equation (26):

Γ(t) = Γ(0) +

t∫

t0

V(Γ(t′))dt′ (33)

replacing by Γ(t′) = Γ(0) +
∫ t′

t0
V(Γ(t′′))dt′′ and Γ(t′′) by

Γ(t′′) = Γ(0)+
∫ t′′

t0
V(Γ(t′′′))dt′′′ and so on. This recursive

process defines U as a t-ordered multiple integral which
helps us to prove in a constructive way the existence and
uniqueness of solutions by Picard’s method of successive
approximations [24]. The crucial point now is the follow-
ing: for a given initial condition, what is the topological
nature of the trajectory? Clearly the problem at hand is
to study the various types of flows in the phase space. The
simplest way of doing this is to calculate the volume of a
certain domain Ω

D [Ω(t)] =
∫

Ω

dY1 · dY2 · · ·dYr+1. (34)

Any point in D [Ω(t0)] can be regarded as a possible initial
condition, and as t increases each point describes a curve
which is generated by the application of U(t0, t). Each
point Γ(t0) “evolves” uniquely in a new point Γ(t) in the
volume D [Ω(t)]. In general, both the shape and volume of
D [Ω(t)] change during the transformation, therefore we
have

dD [Ω(t)]
dt

=
d

dt

∫

Ω

dY1 · dY2 · · · dYr+1

=
∫

Ω

dJ(t)
dt

dY1(0) · dY2(0) · · ·dYr+1(0) (35)

where

J(t) =
∂ [Y1(t), Y2(t), ..., Yr+1(t)]

∂ [Y1(t0), Y2(t0), ..., Yr+1(t0)]
(36)

is the Jacobian of the transformation. In appendix I we
show that

dJ
dt

=
r+1∑

i=1

∂Ẏi(t)
∂Yi(t)

J(t) (37)

Ẏi(t) being the derivative with respect to the t. With this
equation we transform equation (35) into

dD [Ω(t)]
dt

= ∇ ·VD [Ω(t)] (38)

where

∇ ·V =
r+1∑

i=1

∂Ẏi(t)
∂Yi(t)

(39)

is the divergence of V in the phase-space. It follows that
the volume of any domain in the phase-space is preserved

by the transformation if ∇ · V = 0 everywhere so that
|J(t)| = |J(0)| = 1. On the contrary if ∇ · V < 0 the
original set of points contained in the volume D [Ω(0)]
contracts to a set of zero volume in the phase space.

Note that ∇ · V can be evaluated directly from equa-
tion (26), without computing explicitly Γ (t). However, we
are now faced with the problem to determine the evolution
of a small perturbation in the initial conditions dictated
by equations (26). This problem can be approached in
two different ways depending on the particular range of
the parameter t. Specifically, if t0 ≤ t ≤ t1 the theorem of
the continuous dependence on the initial conditions can be
used, otherwise if t can increase to infinity one can tackle
the problem by using the stability theory [25].

The parameter t, is a label individuating the different
equilibrium states occupied by as system in a transfor-
mation, therefore, it can considered, in principle, an un-
limited variable. This allows us to investigate about the
stability of solutions of equations (26)

6 Linear stability

A point (Ȳ1, Ȳ2, ..., Ȳr+1), such that α
β∆j(Ȳ1, Ȳ2, ...,

Ȳr+1) = 0 for all j = 1, 2, . . . , r + 1, where equation (25)
becomes meaningless, is called singular point. In this sec-
tion, we investigate the analytical properties of a thermo-
dynamic transformation in proximity of these points.

Consider the autonomous set of equation (26), without
knowing the solution, it is possible to obtain much qual-
itative information about the flow by plotting the phase
portrait [25]. If the derivatives ∂α

β∆i/∂Yj, i, j = 1, 2, . . . ,
r + 1 do not all vanish identically at the singular point,
then we can also solve locally for Γ (t), near Γ̄(t), per-
forming a linear stability analysis near a singular point.
To this aim we expand the functions α

β∆j(Y1, Y2, ..., Yr+1)
in Taylor series.

To first order in the displacement δYi = Yi − Ȳi we
obtain the well-known variational equations

dδYi

dt
=

r+1∑

j=1

α
β
AijδYj (40)

that are linear equations in the displacements δY ∗
i , since

the Jacobi matrix of the transformation

α
βA = α

βAij =

(
∂α

β∆i

∂Y ∗
j

)

Yk=Ȳk

(41)

has constant entries.
Therefore near a singular point equation (26), becomes

dδΓ
dt

= α
βAδΓ(t) (42)

whose solution can be obtained explicitly from the
Picard’s method, which yields

δΓ(t) =

(
I +

∞∑

k=1

tk

k!
α
βAk

)
δΓ(0) = exp(α

βAt)δΓ(0) (43)
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where I denotes the identity matrix and the sum of the se-
ries is by definition the exponential of the matrix α

βA. The
evaluation of this exponential is more easily performed af-
ter the structure of α

βA has been resolved. In general, if
α
βA can be diagonalized, then we can write

δΓ(t) =
r+1∑

i=1

cie
α
β λitα

βei (44)

where α
β
ei is the eigenvector of α

βA corresponding to eigen-
value α

βλi and the constants ci are to be determined by the
initial conditions. If α

βA is not diagonalizable, one still may
be able to obtain the right eigenvalues of α

βA provided that
the eigenvectors of α

βA form a complete set spanning the
(r + 1)-dimensional tangent space near the singular point
Γ̄ [25].

We are, now, in position to define the linear stabil-
ity of a singular point Γ̄. A point is a stable point if
Re

{
α
βλj

}
≤ 0 for all indices j while it is an unstable

point if Re
{

β
αλj

}
> 0 for at least one index j. Obvi-

ously the global phase portrait will consist of some distri-
bution of various singularity, with flow lines determined
by the non linear vector V connecting the various local
portraits. Clearly, by varying the initial conditions, it is
possible to shift the system from a basin of attraction to
another. Nevertheless such investigation can be performed
only if the α

β∆j(Y1, Y2, ..., Yr+1) are analytical functions in
a neighbourhood of the singular points. It is well known,
however, that the physical properties near singular points
cannot be treated analytically. Indeed these studies have
been used to define critical exponents which provide an in-
sight into the nature of a singular transition. The discrep-
ancy between theory and experiment indicates the these
state cannot be treated analytically [26–31].

Although this point will be the subject of a complete
study in a forthcoming paper, here, we anticipate that in
such conditions the stability can be analysed by choosing
for D [Ω] an infinitesimal (r + 1)-dimensional sphere of
radius α

βεi(0), which in the course of the transformation
deforms into an infinitesimal ellipsoid whose principal axes
εi(t) are given by

α
βεi(t) = α

βεi(0)e
α
β λit. (45)

In the limit α
βεi(0) → 0 this relationship holds for arbi-

trarily long t so that α
βλi can be defined by

α
βλi(t) = lim

t→∞ lim
α
β ε(0)→0

1
t

ln

[
α
βεi(t)
α
βεi(0)

]
. (46)

The basic idea of equation (46) is that small perturbations
in the initial conditions are exponentially fast so that a
path can be computed only for particular values of t such
that α

βεi(0)e
α
βλit � L where L ∼ the extent of the phase

space where the transformation occurs.

7 Discussion

In this section we apply the general treatment stated in
the previous sections to a study of the properties of one-
component two-phase systems. This application has to be
considered a simple example which allows us to compare
the method results with known physical situations [4]. For
the sake of clarity, the discussion about the phase tran-
sitions of a material, in presence and in absence of an
external magnetic field, shall be developed in two distinct
cases.

Case 1. One- component system in the absence of an
external magnetic field

For a one-component system, r = 1 and ν = 2. Let us
consider 1 as the reference phase, whereby equation (26)
reduces to

dP

dt
= 1 [s]2

dT

dt
= 1 [v]2 (47)

where 1 [s]2 and 1 [v]2 are nonlinear functions of T and P .
For 1 [s]2 �= 0 and 1 [v]2 �= 0 the set of equations (47)

correspond to the classic Clausius-Clayperon equation
whose solution can be obtained explicitly:

P∫

P0

dP

1 [s]2
=

T∫

T0

dT

1 [v]2
= t− t0. (48)

This formal procedure implies that the initial conditions
T0, P0 at t = t0 are not taken among the set {T, P}
of points of 1 [s]2 and 1 [v]2, such that 1 [s]2 = 0 and
1 [v]2 = 0, i.e. the transformation is not singular. More
precisely a transformation is entirely determined by the
position and nature of its singular points. In this context
a singular point corresponds to a transformation where the
volume is not discontinuous and the latent heat of trans-
formation is zero. There are only two well-established in-
stances of transitions which show no discontinuity of either
volume or enthalpy: glass transition in polymers and onset
of superconductivity in a zero magnetic field [31,32]. Let
T̄ , P̄ be the singular point, by expanding the right-hand
side of equation (47) in Taylor series around this point we
obtain:

1 [s]2 = 1 [cP]2

T
δT − 1 [V β]2 δP + ...

1 [v]2 = 1 [βV ]2 δT − 1 [VKT]2 δP + ... (49)

where KT = − 1
V

(
∂V
∂P

)
T
, β = 1

V

(
∂V
∂T

)
P
.

The coefficients in these equations have been evaluated
using Maxwell’s equations [2] and taking into account the
commutability of the operators 1 [ ]2 and ∂/∂x.
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The perturbation equations, at the first order approx-
imation, are then

d(δP )
dt

= −1 [βV ]2 δP + 1 [cP]2

T
δT

d(δT )
dt

= −1 [VKT]2 δP + 1 [βV ]2 δT (50)

where it is evident that ∇ · V = trace(21A) = 0 and con-
sequently |J(t)| = 1. Thus the volume in the phase space
is preserved during the transformation.

Since the matrix is traceless, its eigenvalues can be
easily evaluated by the relation

λ2 +
∣∣2
1A

∣∣ = 0 (51)

|21A| being the determinant of 2
1A.

The solutions are stable only if

∣∣2
1A

∣∣ = 1 [cP]2

T
1 [V KT]2 −

(
1 [V β]2

)2

> 0 (52)

more precisely, in a singular point the solutions may only
to oscillate around the equilibrium values T̄ , P̄ . Maybe
that these oscillations make the phases macroscopically
indistinguishable in a continuous transformation (e.g. crit-
ical opalescence). Inequality (52) implies that

1 [cP]2

T
1 [V KT]2 > 0 (53)

so that the transformation can occur only if 1 [cP]2 and
1 [V KT]2 have the same sign, that is to say cp and VKT

have a finite discontinuity at equilibrium. This also implies
that

1 [V KT]2 → 0 ⇒ 1 [cP]2 → ∞
1 [cP]2 → 0, ⇒ 1 [V KT]2 → ∞. (54)

In other words a λ-transition may be seen as a consequence
of the stability conditions.

If, following Ehrenfest [11,12], one assumes that both
volumes and entropy do not suffer any discontinuities, it
is found ∣∣2

1A
∣∣ = 0 (55)

or equivalently

1 [cP]2

T
1 [KT]2 =

(
1 [β]2

)2

V (56)

that is the Prigogine-Defay relation [32].
Taking into account equation (52) one deduces that the

solution may be stable only if δT = const. and δP = const.
We conclude, therefore, that the Prigogine-Defay relation,
often used to analyse the problems of phase transitions, is
an intrinsically unstable solution. This conclusion seems
in agreement with the fact that equation (56) is not ex-
perimentally confirmed [4]. Thus the initial Ehrenfest’s
hypothesis on the continuity of entropy and volume is

generally not valid. Finally, we observe that, with equa-
tions (14) and (17), the chemical potential (that in this
case is the molar Gibbs free energy), can be written as

dµ

dt
= −s(1)1 [v]2 + v(1)

1 [s]2 (57)

and, making use of equation (47) one arrives at

dµ

dt
= −s(1) dT

dt
+ v(1) dP

dt
. (58)

This equation states that the singularity of the transfor-
mation are “extreme” points of µ which is the basic idea of
Erhenfest’s approach to phase transitions [28]. From this
point of view, we can say that equation (26) is a sort of
generalized Erhenfest’s approach, to systems with f >
1 degrees of freedom. We notice that the method allows
to interpret the so-called higher-order phase transitions in
terms of only equilibrium thermodynamics.

Case 2. System of one-component in the presence of an
external magnetic field

In this case equation (26) becomes

dP

dt
= 1 [s∗]2

dT

dt
= 1 [v∗]2. (59)

Making use of equations (20) and (21) one finds

1 [s∗]2 = 1 [s]2 + 1 [χ∗]2
(
∂H2/2
∂T

)

P

(60)

1 [v∗]2 = 1 [v]2 − 1 [χ∗]2
(
∂H2/2
∂P

)

T

(61)

where

1 [χ∗]2 = η01 [χ+ ν]2 (62)

and the definition (8) has been used.
It is clear that a singular point is individuated by the

solutions of the following equations

1 [s]2 + 1 [χ∗]2
(
∂H2/2
∂T

)

P

= 0 (63)

1 [v]2 − 1 [χ∗]2
(
∂H2/2
∂P

)

T

= 0. (64)

It is easily shown that a nontrivial solution exists only if

1 [s]2 = 0; 1 [v]2 = 0; 1 [χ∗]2 = 0. (65)
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Therefore equation (50) can be used to evaluate the per-
turbation equation near the singular point, obtaining

dδP

dt
=

{
−1 [βV ]2 +

∂1 [χ∗]2

∂P

∂
(
H2/2

)

∂T

}
δP

+

{
1[cP]2

T
+
∂1[χ∗]2

∂T

∂
(
H2/2

)

∂T

}
δT

dδT

dt
= −

{

1 [KTV ]2 +
∂1 [χ∗]2

∂P

∂
(
H2/2

)

∂P

}
δP

+

{

1 [βV ]2 − ∂1[χ∗]2

∂T

∂
(
H2/2

)

∂P

}
δT. (66)

We note that

∇ · 2
1A =

∂1 [χ∗]2

∂P

∂
(
H2

/
2
)

∂T
− ∂1 [χ∗]2

∂T

∂
(
H2/2

)

∂P
(67)

Hence the phase-volume is dependent on magnetic prop-
erties of the phases. In other words, for diamagnetic or
paramagnetic materials the phase-volume varies differ-
ently during the transformation.

In this case the eigenvalues of matrix 2
1A can be cal-

culated by solving the quadratic equation

(
2
1λ

)2
+ ∇ · 2

1A
2
1λ+

∣∣2
1A

∣∣ = 0 (68)

where the determinant |21A| can be evaluated directly from
equation (66). Thus the study of the behaviour in a sin-
gular point is reduced to an algebraic problem. If for in-
stance, χ∗ = χ∗(T ) and H = H(T ), then ∇ · A = 0 so
that

∣∣2
1A

∣∣ = 1 [cP]2

T
1 [V KT]2 −

(
1 [V β]2

)2

+ 1 [V KT]2
d1 [cP]2

dT

d
(
H2/2

)

dT
(69)

and the stability analysis is the same of case1. Finally, we
note that if P or T are kept constant during the transfor-
mation, the equations (59)–(61) give

(
∂
(
H2/2

)

∂T

)

P

= − 1 [s]2

1 [χ∗]2
(70)

and (
∂
(
H2/2

)

∂P

)

T

= 1 [v]2

1 [χ∗]2
(71)

which are the expressions used in textbooks to explain
the transition from a normal conductor to a superconduc-
tor [33].

Thus equations (59) synthesize fully the phase be-
haviour of a one-component system in a magnetic field. It
is important thus to underline that the results discussed
in this section are a consequence of development (49), that

is to say they are valid for systems with da classical be-
haviour. The discussion about the phase behaviour of a
nonclassical system, in the presence and absence of a mag-
netic field, where equation (60) is no longer valid will be
treated separately in a forthcoming paper. Here we con-
clude observing that by introducing a state label the phase
transitions in proximity of singular points may be analysed
in terms of the stability theory. This label allows to extend
the Ehrenfest’s approach to multi-component systems.

For one-component systems the method is particularly
simple because it is reducible to an algebraic problem.

The authors are grateful to “Consorzio Interuniversitario per
lo sviluppo dei Sistemi a Grande Interfase-CSGI (Firenze)” for
financial support.

Appendix A

The object is to study the derivative dJ(t)
dt , where J(t)

is defined in equation (40). To obtain this derivative one
differentiates, e.g. row by row:

dJ(t)
dt

=
∂
[
Ẏ1(t), Y2(t), ..., Yr+1(t)

]

∂ [Y1(t0), Y2(t0), ..., Yr+1(t0)]

+
∂
[
Y1(t), Ẏ2(t), ..., Yr+1(t)

]

∂ [Y1(t0), Y2(t0), ..., Yr+1(t0)]

+ · · · +
∂
[
Y1(t), Y2(t), ..., Ẏr+1(t)

]

∂ [Y1(t0), Y2(t0), ..., Yr+1(t0)]
. (A.1)

Applying the chain rule for Jacobians, we obtain

∂
[
Y1(t), ..., Ẏj(t), ..., Yr+1(t)

]

∂ [Y1(t0), ..., Yr+1(t0)]
=

∂
[
Y1(t), ..., Ẏj(t), ..., Yr+1(t)

]

∂ [Y1(t), ..., Yr+1(t)]

× ∂
[
Y1(t), ..., Yj(t), ..., Y ∗

r+1(t)
]

∂ [Y1(t0), ..., Yr+1(t0)]

=
∂
[
Y1(t), ..., Ẏj(t), ..., Yr+1(t)

]

∂ [Y1(t), ..., Yr+1(t)]
J(t). (A.2)

It is easy to show that

∂ [x1, x2]
∂ [x1, t]

=
∂x2

∂t
(A.3)

and this generalizes to

∂
[
Y1(t), ..., Ẏj(t), ..., Yr+1(t)

]

∂ [Y1(t), ..., Yr+1(t)]
=
∂Ẏj(t)
∂Yj(t)

(A.4)
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With the substitution of equations (A.2) and (A.4)
into (A.1) we arrive at

dJ(t)
dt

=
r+1∑

j=1

∂Ẏj(t)
∂Yj(t)

J(t) (A.5)

which is equation (37).
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